Exercise 25

Solve the differential equation using the method of variation of parameters.

$$
y^{\prime \prime}-3 y^{\prime}+2 y=\frac{1}{1+e^{-x}}
$$

Solution

Since the ODE is linear, the general solution can be written as the sum of a complementary solution and a particular solution.

$$
y=y_{c}+y_{p}
$$

The complementary solution satisfies the associated homogeneous equation.

$$
\begin{equation*}
y_{c}^{\prime \prime}-3 y_{c}^{\prime}+2 y_{c}=0 \tag{1}
\end{equation*}
$$

This is a linear homogeneous ODE, so its solutions are of the form $y_{c}=e^{r x}$.

$$
y_{c}=e^{r x} \quad \rightarrow \quad y_{c}^{\prime}=r e^{r x} \quad \rightarrow \quad y_{c}^{\prime \prime}=r^{2} e^{r x}
$$

Plug these formulas into equation (1).

$$
r^{2} e^{r x}-3\left(r e^{r x}\right)+2\left(e^{r x}\right)=0
$$

Divide both sides by $e^{r x}$.

$$
r^{2}-3 r+2=0
$$

Solve for r.

$$
\begin{gathered}
(r-2)(r-1)=0 \\
r=\{1,2\}
\end{gathered}
$$

Two solutions to the ODE are e^{x} and $e^{2 x}$. By the principle of superposition, then,

$$
y_{c}(x)=C_{1} e^{x}+C_{2} e^{2 x}
$$

On the other hand, the particular solution satisfies the original ODE.

$$
\begin{equation*}
y_{p}^{\prime \prime}-3 y_{p}^{\prime}+2 y_{p}=\frac{1}{1+e^{-x}} \tag{2}
\end{equation*}
$$

In order to obtain a particular solution, use the method of variation of parameters: Allow the parameters in the complementary solution to vary.

$$
y_{p}=C_{1}(x) e^{x}+C_{2}(x) e^{2 x}
$$

Differentiate it with respect to x.

$$
y_{p}^{\prime}=C_{1}^{\prime}(x) e^{x}+C_{2}^{\prime}(x) e^{2 x}+C_{1}(x) e^{x}+2 C_{2}(x) e^{2 x}
$$

If we set

$$
\begin{equation*}
C_{1}^{\prime}(x) e^{x}+C_{2}^{\prime}(x) e^{2 x}=0 \tag{3}
\end{equation*}
$$

then

$$
y_{p}^{\prime}=C_{1}(x) e^{x}+2 C_{2}(x) e^{2 x} .
$$

Differentiate it with respect to x once more.

$$
y_{p}^{\prime \prime}=C_{1}^{\prime}(x) e^{x}+2 C_{2}^{\prime}(x) e^{2 x}+C_{1}(x) e^{x}+4 C_{2}(x) e^{2 x}
$$

Substitute these formulas into equation (2).

$$
\begin{aligned}
{\left[C_{1}^{\prime}(x) e^{x}+2 C_{2}^{\prime}(x) e^{2 x}+C_{1}(x) e^{x}+\overline{4 C_{2}}(x) e^{2 x}\right]-3\left[C_{1}(x) e^{x}\right.} & \left.+\overline{2 C_{2}(x)} e^{2 x}\right] \\
& +2\left[\underline{C_{1}(x) e^{x}}+C_{2}(x) e^{2 x}\right]=\frac{1}{1+e^{-x}}
\end{aligned}
$$

Simplify the result.

$$
\begin{equation*}
C_{1}^{\prime}(x) e^{x}+2 C_{2}^{\prime}(x) e^{2 x}=\frac{1}{1+e^{-x}} \tag{4}
\end{equation*}
$$

Subtract the respective sides of equations (3) and (4) to eliminate $C_{1}^{\prime}(x)$.

$$
C_{2}^{\prime}(x) e^{2 x}=\frac{1}{1+e^{-x}}
$$

Solve for $C_{2}^{\prime}(x)$.

$$
C_{2}^{\prime}(x)=\frac{e^{-2 x}}{1+e^{-x}}
$$

Integrate this result to get $C_{2}(x)$, setting the integration constant to zero.

$$
\begin{aligned}
C_{2}(x) & =\int^{x} C_{2}^{\prime}(w) d w \\
& =\int^{x} \frac{e^{-2 w}}{1+e^{-w}} d w \\
& =\int^{x} \frac{1}{e^{w}\left(e^{w}+1\right)} d w \\
& =\int^{e^{x}} \frac{1}{u(u+1)}\left(\frac{d u}{u}\right) \\
& =\int^{e^{x}} \frac{1}{u^{2}(u+1)} d u \\
& =\int^{e^{x}}\left(\frac{1}{u^{2}}-\frac{1}{u}+\frac{1}{u+1}\right) d u \\
& =\left.\left(-\frac{1}{u}-\ln |u|+\ln |u+1|\right)\right|^{e^{x}} \\
& =\left.\left(-\frac{1}{u}+\ln \left|\frac{u+1}{u}\right|\right)\right|^{e^{x}} \\
& =\left.\left(-\frac{1}{u}+\ln \left|1+\frac{1}{u}\right|\right)\right|^{e^{x}} \\
& =-e^{-x}+\ln \left(1+e^{-x}\right)
\end{aligned}
$$

Solve equation (3) for $C_{1}^{\prime}(x)$.

$$
\begin{aligned}
C_{1}^{\prime}(x) & =-C_{2}^{\prime}(x) e^{x} \\
& =-\left(\frac{e^{-2 x}}{1+e^{-x}}\right) e^{x} \\
& =-\frac{e^{-x}}{1+e^{-x}}
\end{aligned}
$$

Integrate this result to get $C_{1}(x)$, setting the integration constant to zero.

$$
\begin{aligned}
C_{1}(x) & =\int^{x} C_{1}^{\prime}(w) d w \\
& =-\int^{x} \frac{e^{-w}}{1+e^{-w}} d w \\
& =\int^{1+e^{-x}} \frac{d u}{u} \\
& =\left.\ln |u|\right|^{1+e^{-x}} \\
& =\ln \left|1+e^{-x}\right| \\
& =\ln \left(1+e^{-x}\right)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
y_{p} & =C_{1}(x) e^{x}+C_{2}(x) e^{2 x} \\
& =\ln \left(1+e^{-x}\right) e^{x}+\left[-e^{-x}+\ln \left(1+e^{-x}\right)\right] e^{2 x} \\
& =\left(e^{x}+e^{2 x}\right) \ln \left(1+e^{-x}\right)-e^{x},
\end{aligned}
$$

and the general solution to the ODE is

$$
\begin{aligned}
y(x) & =y_{c}+y_{p} \\
& =C_{1} e^{x}+C_{2} e^{2 x}+\left(e^{x}+e^{2 x}\right) \ln \left(1+e^{-x}\right)-e^{x} \\
& =\left(C_{1}-1\right) e^{x}+C_{2} e^{2 x}+\left(e^{x}+e^{2 x}\right) \ln \left(1+e^{-x}\right) \\
& =C_{3} e^{x}+C_{2} e^{2 x}+\left(e^{x}+e^{2 x}\right) \ln \left(1+e^{-x}\right),
\end{aligned}
$$

where C_{2} and C_{3} are arbitrary constants.

